top of page

Tipos de gráficas de función cuadrática

Representación gráfica de una función cuadrática

Si pudiésemos representar en una gráfica "todos" los puntos [x,f(x)] de una función cuadrática, obtendríamos siempre una curva llamada parábola.

Parábola del puente, una función cuadrática.

Como contrapartida, diremos que una parábola es la representación gráfica de una función cuadrática.

Dicha parábola tendrá algunas características o elementos bien definidos dependiendo de los valores de la ecuación que la generan.

Estas características o elementos son:

Orientación o concavidad (ramas o brazos)

Puntos de corte con el eje de abscisas (raíces)

Punto de corte con el eje de ordenadas

Eje de simetría

Vértice

Orientación o concavidad

Una primera característica es la orientación o concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo.

Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax2):

Si a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x2 − 3x − 5}

Si a < 0 (negativo) la parábola es convexa o con puntas hacia abajo, como en f(x) = −3x2 + 2x + 3


Aprende Mate en

este blog

© 2015 by Aprende Mate Proudly created with Wix.com

  • Facebook Clean Grey
  • Twitter Clean Grey
  • LinkedIn Clean Grey
bottom of page